• <em id="pai5d"></em><sup id="pai5d"></sup>
    
    

    <small id="pai5d"><rp id="pai5d"></rp></small>
    <option id="pai5d"></option>

    
    
  • <sup id="pai5d"></sup>
    <em id="pai5d"><label id="pai5d"></label></em>

  • <s id="pai5d"></s>
    當前位置 : 首頁(yè)  圖書(shū) 正文

    微積分=Calculus.I:英文簡(jiǎn)介,目錄書(shū)摘

    2019-11-15 14:17 來(lái)源:京東 作者:京東
    微積分
    微積分=Calculus.I:英文
    暫無(wú)報價(jià)
    20+評論 100%好評
    編輯推薦:本書(shū)可以作為大學(xué)數學(xué)微積分雙語(yǔ)或英語(yǔ)教學(xué)教師和準備出國留學(xué)深造學(xué)子的參考書(shū)。特別適合中外合作辦學(xué)的國際教育班的學(xué)生,能幫助他們較快地適應全英文的學(xué)習內容和教學(xué)環(huán)境,完成與國外大學(xué)學(xué)習的銜接。本書(shū)在定稿之前已在多個(gè)學(xué)校作為校本教材試用,而且得到了師生的好評。
    內容簡(jiǎn)介:本書(shū)采用學(xué)生易于接受的知識結構和英語(yǔ)表述方式,科學(xué)、系統地介紹了微積分(上冊)中函數的概念、極限和連續、導數和微分、中值定理和導數的應用、不定積分和定積分等知識。強調通用性和適用性,兼顧先進(jìn)性。本書(shū)起點(diǎn)低,難度坡度適中,語(yǔ)言簡(jiǎn)潔明了,不僅適用于課堂教學(xué)使用,同時(shí)也適用于自學(xué)自習。全書(shū)有關(guān)鍵詞索引,習題按章配置,題量適中,題型全面,書(shū)后附有答案。
    本書(shū)讀者對象為高等院校理工、財經(jīng)、醫藥、農林等專(zhuān)業(yè)大學(xué)生和教師,特別適合作為中外合作辦學(xué)的國際教育班的學(xué)生以及準備出國留學(xué)深造學(xué)子的參考書(shū)。
    作者簡(jiǎn)介:毛綱源,武漢理工大學(xué)資深教授,畢業(yè)于武漢大學(xué),留校任教,后調入武漢工業(yè)大學(xué)(現合并為武漢理工大學(xué))擔任數學(xué)物理系系主任,在高校從事數學(xué)教學(xué)與科研工作40余年,除了出版多部專(zhuān)著(zhù)(早在1998年,世界科技出版公司W(wǎng)orld Scientific Publishing Company就出版過(guò)他主編的線(xiàn)性代數Linear Algebra的英文教材)和發(fā)表數十篇專(zhuān)業(yè)論文外,還發(fā)表10余篇考研數學(xué)論文。
    主講微積分、線(xiàn)性代數、概率論與數理統計等課程。理論功底深厚,教學(xué)經(jīng)驗豐富,思維獨特。曾多次受邀在各地主講考研數學(xué),得到學(xué)員的廣泛認可和一致好評:“知識淵博,講解深入淺出,易于接受”“解題方法靈活,技巧獨特,輔導針對性極強”“對考研數學(xué)的出題形式、考試重點(diǎn)難點(diǎn)了如指掌,上他的輔導班受益匪淺”。
    周海嬰,北京師范大學(xué)珠海分校副教授,畢業(yè)于南開(kāi)大學(xué),香港浸會(huì )大學(xué)數學(xué)博士,主講微積分、概率論與數理統計、統計學(xué)、抽樣技術(shù)等課程。在國內外權wei期刊發(fā)表中英文論文10余篇。
    目錄:Chapter 1 Functions(1)
    1.1 Preliminary knowledge(1)
    1.1.1 Inequalities and their properties(1)
    1.1.2 Absolute value and its properties(5)
    1.1.3 The range of variable(8)
    1.2 Functions(10)
    1.2.1 Concept of functions(10)
    1.2.2 Features of a function(12)
    1.2.3 Inverse functions(16)
    1.2.4 Composite functions(19)
    1.2.5 Elementary functions(20)
    1.2.6 Nonelementary functions(30)
    1.2.7 Implicit functions(33)
    Exercise 1(33)

    Chapter 2 Limit and Continuity(36)
    2.1 Limit(36)
    2.1.1 Definition of a sequence(36)
    2.1.2 Descriptive definition of limit of a sequence(36)
    2.1.3 Quantitative definition of limit of a sequence(38)
    2.2 Limits of functions(39)
    2.2.1 Definition of finite limits of functions as x→x0(39)
    2.2.2 Definition of infinite limits of functions as x→x0(42)
    2.2.3 Limits of functions as independent variable tending to infinity(44)
    2.2.4 Left limit and right limit(47)
    2.2.5 The properties of limits of functions(48)
    2.2.6 Operation rules of limits(50)
    2.2.7 Criteria of existence of limits and two important limits (54)
    2.2.8 Infinitesimal, infinity and their basic properties(58)
    2.2.9 Simple application of limit in economics(62)
    2.3 Continuity of functions(64)
    2.3.1 Continuity(64)
    2.3.2 Discontinuous points of a function(68)
    2.3.3 Operations and properties of continuous functions(69)
    2.3.4 Continuity of elementary functions(72)
    2.3.5 Continuity of the inverse functions(73)
    2.3.6 Properties of continuous functions on closed interval(73)
    Exercise 2(76)

    Chapter 3 Derivative and differential(80)
    3.1 Concept of derivative(80)
    3.1.1 Introduction of derivative(80)
    3.1.2 Definition of derivative(82)
    3.1.3 Lefthand derivative and righthand derivative(84)
    3.1.4 The relationship between differentiability and continuity of functions(85)
    3.1.5 Applying the definition of derivative to find derivatives(87)
    3.1.6 Geometric interpretation of derivative(91)
    3.2 Rules of finding derivatives(91)
    3.2.1 Four arithmetic operation rules of derivatives(91)
    3.2.2 Derivative rules of composite functions(93)
    3.2.3 Derivative rules of inverse functions(95)
    3.2.4 Derivative rules of implicit functions(96)
    3.2.5 Derivative rules of function with parametric forms(97)
    3.2.6 Some special derivative rules(98)
    3.2.7 Basic differentiation formulas(100)
    3.2.8 Derivatives of higher order(102)
    3.3 Differentials of functions(104)
    3.3.1 Definition of differentials(104)
    3.3.2 The equations of a tangent and a normal(107)
    3.3.3 Formulas and operation rule of differentials(109)
    3.3.4 Application of differentials in approximating values(111)
    Exercise 3(112)

    Chapter 4 The mean value theorems and application of derivatives(116)
    4.1 The mean value theorems(116)
    4.1.1 Rolle’s theorem(116)
    4.1.2 Lagrange’s theorem(118)
    4.1.3 Cauchy’s theorem(121)
    4.2 L’Hospital’s rule(123)
    4.2.1 Evaluating limits of indeterminate forms of the type 00(124)
    4.2.2 Evaluating the limits of indeterminate forms of the type ∞∞(126)
    4.2.3 Evaluating the limits of other indeterminate forms(127)
    4.3 Taylor formula(129)
    4.4 Discuss properties of functions by derivatives(136)
    4.4.1 Monotonicity of functions(136)
    4.4.2 Concavity and Convexity(140)
    4.5 Extreme values(143)
    4.6 Absolute maxima (minima) and its application(148)
    4.6.1 Absolute maxima (minima)(148)
    4.6.2 Applied problems of absolute maxima (minima)(150)
    4.7 Graphing(152)
    4.7.1 Asymptotes lines of curves(152)
    4.7.2 Sophisticated graphing(154)
    4.8 Application of derivatives in economics(158)
    4.8.1 Marginal analysis(158)
    4.8.2 Elasticity of function(164)
    Exercise 4(169)

    Chapter 5 Indefinite integrals(173)
    5.1 Antiderivative and indefinite integral(173)
    5.1.1 Concept of antiderivatives(173)
    5.1.2 Concept of indefinite integrals(175)
    5.2 Fundamental integral formulas(177)
    5.3 Integral methods of substitution(180)
    5.3.1 The first kind of substitution(180)
    5.3.2 The second kind of substitution(185)
    5.4 Integration by parts(189)
    5.5 Evaluate indefinite integrals of some special type(194)
    5.5.1 Integrals of rational functions(194)
    5.5.2 Integrals of irrational functions(198)
    5.5.3 Integrals of trigonometric functions(199)
    5.5.4 Integral of piecewise defined function(201)
    Exercise 5(202)

    Chapter 6 Definite integrals(205)
    6.1 Definition of definite integrals(205)
    6.1.1 Two examples for definite integrals(205)
    6.1.2 Definition of definite integrals(207)
    6.1.3 Geometric meaning of definite integrals(211)
    6.2 Basic properties of definite integrals(212)
    6.3 Fundamental theorem of calculus(219)
    6.3.1 A function of upper limit of integral(219)
    6.3.2 NewtonLeibniz formula(222)
    6.4 Integration by substitution and by parts for definite integrals(224)
    6.4.1 Integration by substitution for definite integrals(225)
    6.4.2 Integration by parts for definite integrals(229)
    6.5 Improper integrals(231)
    6.5.1 Improper integrals on infinite intervals(231)
    6.5.2 Improper integrals of unbounded functions(239)
    6.6 Application of integrals(241)
    6.6.1 Computing areas of plan figures(241)
    6.6.2 Volume of a solid of revolution(245)
    6.6.3 Some economic applications of integrals(247)
    Exercise 6(249)

    Answers to exercises(256)
    Answers to exercise1(256)
    Answers to exercise2(257)
    Answers to exercise3(257)
    Answers to exercise4(259)
    Answers to exercise5(261)
    Answers to exercise6(262)
    熱門(mén)推薦文章
    相關(guān)優(yōu)評榜
    品類(lèi)齊全,輕松購物 多倉直發(fā),極速配送 正品行貨,精致服務(wù) 天天低價(jià),暢選無(wú)憂(yōu)
    購物指南
    購物流程
    會(huì )員介紹
    生活旅行/團購
    常見(jiàn)問(wèn)題
    大家電
    聯(lián)系客服
    配送方式
    上門(mén)自提
    211限時(shí)達
    配送服務(wù)查詢(xún)
    配送費收取標準
    海外配送
    支付方式
    貨到付款
    在線(xiàn)支付
    分期付款
    郵局匯款
    公司轉賬
    售后服務(wù)
    售后政策
    價(jià)格保護
    退款說(shuō)明
    返修/退換貨
    取消訂單
    特色服務(wù)
    奪寶島
    DIY裝機
    延保服務(wù)
    京東E卡
    京東通信
    京東JD+
    亚洲精品乱码久久久97_国产伦子一区二区三区_久久99精品久久久欧美_天天看片永久av影城网页
  • <em id="pai5d"></em><sup id="pai5d"></sup>
    
    

    <small id="pai5d"><rp id="pai5d"></rp></small>
    <option id="pai5d"></option>

    
    
  • <sup id="pai5d"></sup>
    <em id="pai5d"><label id="pai5d"></label></em>

  • <s id="pai5d"></s>