• <em id="pai5d"></em><sup id="pai5d"></sup>
    
    

    <small id="pai5d"><rp id="pai5d"></rp></small>
    <option id="pai5d"></option>

    
    
  • <sup id="pai5d"></sup>
    <em id="pai5d"><label id="pai5d"></label></em>

  • <s id="pai5d"></s>
    當前位置 : 首頁(yè)  圖書(shū) 正文

    應用隨機過(guò)程 概率模型導論(英文版 第11版)簡(jiǎn)介,目錄書(shū)摘

    2019-10-30 10:08 來(lái)源:京東 作者:京東
    概率模型
    應用隨機過(guò)程 概率模型導論(英文版 第11版)
    暫無(wú)報價(jià)
    300+評論 98%好評
    編輯推薦:《應用隨機過(guò)程 概率模型導論》是國際知名統計學(xué)家Sheldon M. Ross所著(zhù)的關(guān)于基礎概率理論和隨機過(guò)程的經(jīng)典教材,被加州大學(xué)伯克利分校、哥倫比亞大學(xué)、普度大學(xué)、密歇根大學(xué)、俄勒岡州立大學(xué)、華盛頓大學(xué)等眾多國外知名大學(xué)所采用。
    與其他隨機過(guò)程教材相比,本書(shū)非常強調實(shí)踐性,內含極其豐富的例子和習題,涵蓋了眾多學(xué)科的各種應用。作者富于啟發(fā)而又不失嚴密性的敘述方式,有助于使讀者建立概率思維方式,培養對概率理論、隨機過(guò)程的直觀(guān)感覺(jué)。對那些需要將概率理論應用于精算學(xué)、計算機科學(xué)、管理學(xué)和社會(huì )科學(xué)的讀者而言,本書(shū)是一本極好的教材或參考書(shū)。
    第11版新增大量例子和習題,還對連續時(shí)間的馬爾可夫鏈、漂移布朗運動(dòng)等內容做了修訂,更加注重強化讀者的概率直觀(guān)。
    內容簡(jiǎn)介:

      《應用隨機過(guò)程 概率模型導論(英文版 第11版)》是一部經(jīng)典的隨機過(guò)程著(zhù)作,敘述深入淺出、涉及面廣。主要內容有隨機變量、條件期望、馬爾可夫鏈、指數分布、泊松過(guò)程、平穩過(guò)程、更新理論及排隊論等,也包括了隨機過(guò)程在物理、生物、運籌、網(wǎng)絡(luò )、遺傳、經(jīng)濟、保險、金融及可靠性中的應用。特別是有關(guān)隨機模擬的內容,給隨機系統運行的模擬計算提供了有力的工具。最新版還增加了不帶左跳的隨機徘徊和生滅排隊模型等內容。本書(shū)約有700道習題,其中帶星號的習題還提供了解答。

      《應用隨機過(guò)程 概率模型導論(英文版 第11版)》可作為概率論與數理統計、計算機科學(xué)、保險學(xué)、物理學(xué)、社會(huì )科學(xué)、生命科學(xué)、管理科學(xué)與工程學(xué)等專(zhuān)業(yè)隨機過(guò)程基礎課教材。

    作者簡(jiǎn)介:

      Sheldon M. Ross,國際知名概率與統計學(xué)家,南加州大學(xué)工業(yè)工程與運籌系系主任。1968年博士畢業(yè)于斯坦福大學(xué)統計系,曾在加州大學(xué)伯克利分校任教多年。研究領(lǐng)域包括:隨機模型、仿真模擬、統計分析、金融數學(xué)等。Ross教授著(zhù)述頗豐,他的多種暢銷(xiāo)數學(xué)和統計教材均產(chǎn)生了世界性的影響,如《概率論基礎教程(第8版)》等。

    目錄:1IntroductiontoProbabilityTheory
    1.1Introduction
    1.2SampleSpaceandEvents
    1.3ProbabilitiesDefinedonEvents
    1.4ConditionalProbabilities
    1.5IndependentEvents
    1.6Bayes'Formula
    Exercises
    References
    2RandomVariables
    2.1RandomVariables
    2.2DiscreteRandomVariables
    2.2.1TheBernoulliRandomVariable
    2.2.2TheBinomialRandomVariable
    2.2.3TheGeometricRandomVariable
    2.2.4ThePoissonRandomVariable
    2.3ContinuousRandomVariables
    2.3.1TheUniformRandomVariable
    2.3.2ExponentialRandomVariables
    2.3.3GammaRandomVariables
    2.3.4NormalRandomVariables
    2.4ExpectationofaRandomVariable
    2.4.1TheDiscreteCase
    2.4.2TheContinuousCase
    2.4.3ExpectationofaFunctionofaRandomVariable
    2.5JointlyDistributedRandomVariables
    2.5.1JointDistributionFunctions
    2.5.2IndependentRandomVariables
    2.5.3CovarianceandVarianceofSumsofRandomVariables
    2.5.4JointProbabilityDistributionofFunctionsofRandomVariables
    2.6MomentGeneratingFunctions
    2.6.1TheJointDistributionoftheSampleMeanandSampleVariancefromaNormalPopulation
    2.7TheDistributionoftheNumberofEventsthatOccur
    2.8LimitTheorems
    2.9StochasticProcesses
    Exercises
    References
    3ConditionalProbabilityandConditionalExpectation
    3.1Introduction
    3.2TheDiscreteCase
    3.3TheContinuousCase
    3.4ComputingExpectationsbyConditioning
    3.4.1ComputingVariancesbyConditioning
    3.5ComputingProbabilitiesbyConditioning
    3.6SomeApplications
    3.6.1AListModel
    3.6.2ARandomGraph
    3.6.3UniformPriors,Polya'sUrnModel,andBose-EinsteinStatistics
    3.6.4MeanTimeforPatterns
    3.6.5Thek-RecordValuesofDiscreteRandomVariables
    3.6.6LeftSkipFreeRandomWalks
    3.7AnIdentityforCompoundRandomVariables
    3.7.1PoissonCompoundingDistribution
    3.7.2BinomialCompoundingDistribution
    3.7.3ACompoundingDistributionRelatedtotheNegativeBinomial
    Exercises
    4MarkovChains
    4.1Introduction
    4.2Chapman-KolmogorovEquations
    4.3ClassificationofStates
    4.4Long-RunProportionsandLimitingProbabilities
    4.4.1LimitingProbabilities
    4.5SomeApplications
    4.5.1TheGambler'sRuinProblem
    4.5.2AModelforAlgorithmicEfficiency
    4.5.3UsingaRandomWalktoAnalyzeaProbabilisticAlgorithmfortheSatisfiabilityProblem
    4.6MeanTimeSpentinTransientStates
    4.7BranchingProcesses
    4.8TimeReversibleMarkovChains
    4.9MarkovChainMonteCarloMethods
    4.10MarkovDecisionProcesses
    4.11HiddenMarkovChains
    4.11.1PredictingtheStates
    Exercises
    References
    5TheExponentialDistributionandthePoissonProcess
    5.1Introduction
    5.2TheExponentialDistribution
    5.2.1Definition
    5.2.2PropertiesoftheExponentialDistribution
    5.2.3FurtherPropertiesoftheExponentialDistribution
    5.2.4ConvolutionsofExponentialRandomVariables
    5.3ThePoissonProcess
    5.3.1CountingProcesses
    5.3.2DefinitionofthePoissonProcess
    5.3.3InterarrivalandWaitingTimeDistributions
    5.3.4FurtherPropertiesofPoissonProcesses
    5.3.5ConditionalDistributionoftheArrivalTimes
    5.3.6EstimatingSoftwareReliability
    5.4GeneralizationsofthePoissonProcess
    5.4.1NonhomogeneousPoissonProcess
    5.4.2CompoundPoissonProcess
    5.4.3ConditionalorMixedPoissonProcesses
    5.5RandomIntensityFunctionsandHawkesProcesses
    Exercises
    References
    6Continuous-TimeMarkovChains
    6.1Introduction
    6.2Continuous-TimeMarkovChains
    6.3BirthandDeathProcesses
    6.4TheTransitionProbabilityFunctionPij(t)
    6.5LimitingProbabilities
    6.6TimeReversibility
    6.7TheReversedChain
    6.8Uniformization
    6.9ComputingtheTransitionProbabilities
    Exercises
    References
    7RenewalTheoryandItsApplications
    7.1Introduction
    7.2DistributionofN(t)
    7.3LimitTheoremsandTheirApplications
    7.4RenewalRewardProcesses
    7.5RegenerativeProcesses
    7.5.1AlternatingRenewalProcesses
    7.6Semi-MarkovProcesses
    7.7TheInspectionParadox
    7.8ComputingtheRenewalFunction
    7.9ApplicationstoPatterns
    7.9.1PatternsofDiscreteRandomVariables
    7.9.2TheExpectedTimetoaMaximalRunofDistinctValues
    7.9.3IncreasingRunsofContinuousRandomVariables
    7.10TheInsuranceRuinProblem
    Exercises
    References
    8QueueingTheory
    8.1Introduction
    8.2Preliminaries
    8.2.1CostEquations
    8.2.2Steady-StateProbabilities
    8.3ExponentialModels
    8.3.1ASingle-ServerExponentialQueueingSystem
    8.3.2ASingle-ServerExponentialQueueingSystemHavingFiniteCapacity
    8.3.3BirthandDeathQueueingModels
    8.3.4AShoeShineShop
    8.3.5AQueueingSystemwithBulkService
    8.4NetworkofQueues
    8.4.1OpenSystems
    8.4.2ClosedSystems
    8.5TheSystemM/G/
    8.5.1Preliminaries:WorkandAnotherCostIdentity
    8.5.2ApplicationofWorktoM/G/
    8.5.3BusyPeriods
    8.6VariationsontheM/G/
    8.6.1TheM/G/1withRandom-SizedBatchArrivals
    8.6.2PriorityQueues
    8.6.3AnM/G/1OptimizationExample
    8.6.4TheM/G/1QueuewithServerBreakdown
    8.7TheModelG/M/
    8.7.1TheG/M/1BusyandIdlePeriods
    8.8AFiniteSourceModel
    8.9MultiserverQueues
    8.9.1Erlang'sLossSystem
    8.9.2TheM/M/kQueue
    8.9.3TheG/M/kQueue
    8.9.4TheM/G/kQueue
    Exercises
    References
    9ReliabilityTheory
    9.1Introduction
    9.2StructureFunctions
    9.2.MinimalPathandMinimalCutSets
    9.3ReliabilityofSystemsofIndependentComponents
    9.4BoundsontheReliabilityFunction
    9.4.1MethodofInclusionandExclusion
    9.4.2SecondMethodforObtainingBoundsonr(p)
    9.5SystemLifeasaFunctionofComponentLives
    9.6ExpectedSystemLifetime
    9.6.1AnUpperBoundontheExpectedLifeofaParallelSystem
    9.7SystemswithRepair
    9.7.1ASeriesModelwithSuspendedAnimation
    Exercises
    References
    10BrownianMotionandStationaryProcesses
    10.1BrownianMotion
    10.2HittingTimes,MaximumVariable,andtheGambler'sRuinProblem
    10.3VariationsonBrownianMotion
    10.3.1BrownianMotionwithDrift
    10.3.2GeometricBrownianMotion
    10.4PricingStockOptions
    10.4.1AnExampleinOptionsPricing
    10.4.2TheArbitrageTheorem
    10.4.3TheBlack-ScholesOptionPricingFormula
    10.5TheMaximumofBrownianMotionwithDrift
    10.6WhiteNoise
    10.7GaussianProcesses
    10.8StationaryandWeaklyStationaryProcesses
    10.9HarmonicAnalysisofWeaklyStationaryProcesses
    Exercises
    References
    11Simulation
    11.1Introduction
    11.2GeneralTechniquesforSimulatingContinuousRandomVariables
    11.2.1TheInverseTransformationMethod
    11.2.2TheRejectionMethod
    11.2.TheHazardRateMethod
    11.3SpecialTechniquesforSimulatingContinuousRandomVariables
    11.3.1TheNormalDistribution
    11.3.2TheGammaDistribution
    11.3.3TheChi-SquaredDistribution
    11.3.4TheBeta(n,m)Distribution
    11.3.5TheExponentialDistribution-TheVonNeumannAlgorithm
    11.4SimulatingfromDiscreteDistributions
    11.4.1TheAliasMethod
    11.5StochasticProcesses
    11.5.1SimulatingaNonhomogeneousPoissonProcess
    11.5.2SimulatingaTwo-DimensionalPoissonProcess
    11.6VarianceReductionTechniques
    11.6.1UseofAntitheticVariables
    11.6.2VarianceReductionbyConditioning
    11.6.3ControlVariates
    11.6.4ImportanceSampling
    11.7DeterminingtheNumberofRuns
    11.8GeneratingfromtheStationaryDistributionofaMarkovChain
    11.8.1CouplingfromthePast
    11.8.2AnotherApproach
    Exercises
    References
    Appendix:SolutionstoStarredExercises
    Index


    熱門(mén)推薦文章
    相關(guān)優(yōu)評榜
    品類(lèi)齊全,輕松購物 多倉直發(fā),極速配送 正品行貨,精致服務(wù) 天天低價(jià),暢選無(wú)憂(yōu)
    購物指南
    購物流程
    會(huì )員介紹
    生活旅行/團購
    常見(jiàn)問(wèn)題
    大家電
    聯(lián)系客服
    配送方式
    上門(mén)自提
    211限時(shí)達
    配送服務(wù)查詢(xún)
    配送費收取標準
    海外配送
    支付方式
    貨到付款
    在線(xiàn)支付
    分期付款
    郵局匯款
    公司轉賬
    售后服務(wù)
    售后政策
    價(jià)格保護
    退款說(shuō)明
    返修/退換貨
    取消訂單
    特色服務(wù)
    奪寶島
    DIY裝機
    延保服務(wù)
    京東E卡
    京東通信
    京東JD+
    亚洲精品乱码久久久97_国产伦子一区二区三区_久久99精品久久久欧美_天天看片永久av影城网页
  • <em id="pai5d"></em><sup id="pai5d"></sup>
    
    

    <small id="pai5d"><rp id="pai5d"></rp></small>
    <option id="pai5d"></option>

    
    
  • <sup id="pai5d"></sup>
    <em id="pai5d"><label id="pai5d"></label></em>

  • <s id="pai5d"></s>