• <em id="pai5d"></em><sup id="pai5d"></sup>
    
    

    <small id="pai5d"><rp id="pai5d"></rp></small>
    <option id="pai5d"></option>

    
    
  • <sup id="pai5d"></sup>
    <em id="pai5d"><label id="pai5d"></label></em>

  • <s id="pai5d"></s>
    當前位置 : 首頁(yè)  圖書(shū) 正文

    Python機器學(xué)習入門(mén)(影印版 英文版)簡(jiǎn)介,目錄書(shū)摘

    2020-01-10 11:35 來(lái)源:京東 作者:京東
    python機器學(xué)習入門(mén)
    Python機器學(xué)習入門(mén)(影印版 英文版)
    暫無(wú)報價(jià)
    1900+評論 99%好評
    編輯推薦:
    內容簡(jiǎn)介:  機器學(xué)習已經(jīng)成為許多商業(yè)應用和研究項目的一個(gè)組成部分,同時(shí)擁有廣泛研究團隊的大型公司也投入到這個(gè)領(lǐng)域。如果你使用Python,即使是初學(xué)者,《Python機器學(xué)習入門(mén)(影印版 英文版)》也將教你如何構建自己的機器學(xué)習解決方案。有了目前可用的豐富數據,機器學(xué)習應用程序只受限于你的想象力。
      你將學(xué)習使用Python和scikit-learn庫所需的全部步驟來(lái)創(chuàng )建成功的機器學(xué)習應用程序?!禤ython機器學(xué)習入門(mén)(影印版 英文版)》作者安德烈亞斯·穆勒、莎拉·圭多專(zhuān)注于使用機器學(xué)習算法的實(shí)踐方面,而不會(huì )過(guò)多討論其背后的數學(xué)原理。熟悉NumPy和matplotlib庫將有助于你從《Python機器學(xué)習入門(mén)(影印版 英文版)》中獲得*多信息。
      有了《Python機器學(xué)習入門(mén)(影印版 英文版)》,你會(huì )學(xué)到:機器學(xué)習的基本概念和應用程序各種廣泛使用的機器學(xué)習算法的優(yōu)點(diǎn)和缺點(diǎn)如何呈現通過(guò)機器學(xué)習處理后的數據,包括需要關(guān)注的數據方面于模型評估和參數調整的**方法用于連接模型和封裝工作流的管道的概念處理文本數據的方法,包括特定于文本的處理技術(shù)改善你的機器學(xué)習和數據科學(xué)技能的建議
    作者簡(jiǎn)介:  AndreasMuller,在波恩大學(xué)的機器學(xué)習專(zhuān)業(yè)獲得博士學(xué)位。在擔任計算機視覺(jué)應用的機器學(xué)習研究員后,他加入了紐約大學(xué)數據科學(xué)中心:他也是scikit-learn維護者和核心貢獻者。SarahGuido,是一位數據科學(xué)家,與許多創(chuàng )業(yè)公司有密切合作,近擔任Bitly的首席數據科學(xué)家。Sarah獲得密歇根大學(xué)信息科學(xué)碩士學(xué)位,在多個(gè)學(xué)術(shù)會(huì )議上成功地發(fā)表了演講。
    目錄:Preface
    1. Introduction
    Why Machine Learning?
    Problems Machine Learning Can Solve
    Knowing Your Task and Knowing Your Data
    Why Python?
    scikit-learn
    Installing scikit-learn
    Essential Libraries and Tools
    Jupyter Notebook
    NumPy
    SciPy
    matplotlib
    pandas
    mglearn
    Python 2 Versus Python 3
    Versions Used in this Book
    A First Application: Classifying Iris Species
    Meet the Data
    Measuring Success: Training and Testing Data
    First Things First: Look at Your Data
    Building Your First Model: k-Nearest Neighbors
    Making Predictions
    Evaluating the Model
    Summary and Outlook

    2. Supervised Learning
    Classification and Regression
    Generalization, Overfitting, and Underfitting
    Relation of Model Complexity to Dataset Size
    Supervised Machine Learning Algorithms
    Some Sample Datasets
    k-Nearest Neighbors
    Linear Models
    Naive Bayes Classifiers
    Decision Trees
    Ensembles of Decision Trees
    Kernelized Support Vector Machines
    Neural Networks (Deep Learning)
    Uncertainty Estimates from Classifiers
    The Decision Function
    Predicting Probabilities
    Uncertainty in Multiclass Classification
    Summary and Outlook

    3. Unsupervised Learning and Preprocessing
    Types of Unsupervised Learning
    Challenges in Unsupervised Learning
    Preprocessing and Scaling
    Different Kinds of Preprocessing
    Applying Data Transformations
    Scaling Training and Test Data the Same Way
    The Effect of Preprocessing on Supervised Learning
    Dimensionality Reduction, Feature Extraction, and Manifold Learning
    Principal Component Analysis (PCA)
    Non-Negative Matrix Factorization (NMF)
    Manifold Learning with t-SNE
    Clustering
    k-Means Clustering
    Agglomerative Clustering
    DBSCAN
    Comparing and Evaluating Clustering Algorithms
    Summary of Clustering Methods
    Summary and Outlook

    4. Representing Data and Engineering Features
    Categorical Variables
    One-Hot-Encoding (Dummy Variables)
    Numbers Can Encode Categoricals
    Binning, Discretization, Linear Models, and Trees
    Interactions and Polynomials
    Univariate Nonlinear Transformations
    Automatic Feature Selection
    Univariate Statistics
    Model-Based Feature Selection
    Iterative Feature Selection
    Utilizing Expert Knowledge
    Summary and Outlook

    5. Model Evaluation and Improvement
    Cross-Validation
    Cross-Validation in scikit-learn
    Benefits of Cross-Validation
    Stratified k-Fold Cross-Validation and Other Strategies
    Grid Search
    Simple Grid Search
    The Danger of Overfitting the Parameters and the Validation Set
    Grid Search with Cross-Validation
    Evaluation Metrics and Scoring
    Keep the End Goal in Mind
    Metrics for Binary Classification
    Metrics for Multiclass Classification
    Regression Metrics
    Using Evaluation Metrics in Model Selection
    Summary and Outlook

    6. Algorithm Chains and Pipelines
    Parameter Selection with Preprocessing
    Building Pipelines
    Using Pipelines in Grid Searches
    The General Pipeline Interface
    Convenient Pipeline Creation with make_pipeline
    Accessing Step Attributes
    Accessing Attributes in a Grid-Searched Pipeline
    Grid-Searching Preprocessing Steps and Model Parameters
    Grid-Searching Which Model To Use
    Summary and Outlook

    7. Working with Text Data
    Types of Data Represented as Strings
    Example Application: Sentiment Analysis of Movie Reviews
    Representing Text Data as a Bag of Words
    Applying Bag-of-Words to a Toy Dataset
    Bag-of-Words for Movie Reviews
    Stopwords
    Rescaling the Data with tf-idf
    Investigating Model Coefficients
    Bag-of-Words with More Than One Word (n-Grams)
    Advanced Tokenization, Stemming, and Lemmatization
    Topic Modeling and Document Clustering
    Latent Dirichlet Allocation
    Summary and Outlook

    8. Wrapping Up
    Approaching a Machine Learning Problem
    Humans in the Loop
    From Prototype to Production
    Testing Production Systems
    Building Your Own Estimator
    Where to Go from Here
    Theory
    Other Machine Learning Frameworks and Packages
    Ranking, Recommender Systems, and Other Kinds of Learning
    Probabilistic Modeling, Inference, and Probabilistic Programming
    Neural Networks
    Scaling to Larger Datasets
    Honing Your Skills
    Conclusion
    Index
    相關(guān)商品
    熱門(mén)推薦文章
    相關(guān)優(yōu)評榜
    品類(lèi)齊全,輕松購物 多倉直發(fā),極速配送 正品行貨,精致服務(wù) 天天低價(jià),暢選無(wú)憂(yōu)
    購物指南
    購物流程
    會(huì )員介紹
    生活旅行/團購
    常見(jiàn)問(wèn)題
    大家電
    聯(lián)系客服
    配送方式
    上門(mén)自提
    211限時(shí)達
    配送服務(wù)查詢(xún)
    配送費收取標準
    海外配送
    支付方式
    貨到付款
    在線(xiàn)支付
    分期付款
    郵局匯款
    公司轉賬
    售后服務(wù)
    售后政策
    價(jià)格保護
    退款說(shuō)明
    返修/退換貨
    取消訂單
    特色服務(wù)
    奪寶島
    DIY裝機
    延保服務(wù)
    京東E卡
    京東通信
    京東JD+
    亚洲精品乱码久久久97_国产伦子一区二区三区_久久99精品久久久欧美_天天看片永久av影城网页
  • <em id="pai5d"></em><sup id="pai5d"></sup>
    
    

    <small id="pai5d"><rp id="pai5d"></rp></small>
    <option id="pai5d"></option>

    
    
  • <sup id="pai5d"></sup>
    <em id="pai5d"><label id="pai5d"></label></em>

  • <s id="pai5d"></s>