• <em id="pai5d"></em><sup id="pai5d"></sup>
    
    

    <small id="pai5d"><rp id="pai5d"></rp></small>
    <option id="pai5d"></option>

    
    
  • <sup id="pai5d"></sup>
    <em id="pai5d"><label id="pai5d"></label></em>

  • <s id="pai5d"></s>
    當前位置 : 首頁(yè)  圖書(shū) 正文

    統計機器學(xué)習導論(英文版)簡(jiǎn)介,目錄書(shū)摘

    2019-12-10 17:06 來(lái)源:京東 作者:京東
    統計機器學(xué)習導論
    統計機器學(xué)習導論(英文版)
    暫無(wú)報價(jià)
    300+評論 100%好評
    編輯推薦:
    內容簡(jiǎn)介:統計技術(shù)與機器學(xué)習的結合使其成為一種強大的工具,能夠對眾多計算機和工程領(lǐng)域的數據進(jìn)行分析,包括圖像處理、語(yǔ)音處理、自然語(yǔ)言處理、機器人控制以及生物、醫學(xué)、天文學(xué)、物理、材料等基礎科學(xué)范疇。本書(shū)介紹機器學(xué)習的基礎知識,注重理論與實(shí)踐的結合。第壹部分討論機器學(xué)習算法中統計與概率的基本概念,第二部分和第三部分講解機器學(xué)習的兩種主要方法,即生成學(xué)習方法和判別分類(lèi)方法,其中,第三部分對實(shí)際應用中重要的機器學(xué)習算法進(jìn)行了深入討論。本書(shū)配有MATLAB/Octave代碼,可幫助讀者培養實(shí)踐技能,完成數據分析任務(wù)。
    作者簡(jiǎn)介:【加照片】Masashi Sugiyama,東京大學(xué)教授,擁有東京工業(yè)大學(xué)計算機科學(xué)博士學(xué)位,研究興趣包括機器學(xué)習與數據挖掘的理論、算法和應用,涉及信號處理、圖像處理、機器人控制等。2007年獲得IBM學(xué)者獎,以表彰其在機器學(xué)習領(lǐng)域非平穩性方面做出的貢獻。2011年獲得日本信息處理協(xié)會(huì )頒發(fā)的Nagao特別研究獎,以及日本文部科學(xué)省頒發(fā)的青年科學(xué)家獎,以表彰其對機器學(xué)習密度比范型的貢獻。
    目錄:Contents
    Biography . .iv
    Preface. v
    PART 1INTRODUCTION
    CHAPTER 1Statistical Machine Learning
    1.1Types of Learning 3
    1.2Examples of Machine Learning Tasks . 4
    1.2.1Supervised Learning 4
    1.2.2Unsupervised Learning . 5
    1.2.3Further Topics 6
    1.3Structure of This Textbook . 8
    PART 2STATISTICS AND PROBABILITY
    CHAPTER 2Random Variables and Probability Distributions
    2.1Mathematical Preliminaries . 11
    2.2Probability . 13
    2.3Random Variable and Probability Distribution 14
    2.4Properties of Probability Distributions 16
    2.4.1Expectation, Median, and Mode . 16
    2.4.2Variance and Standard Deviation 18
    2.4.3Skewness, Kurtosis, and Moments 19
    2.5Transformation of Random Variables 22
    CHAPTER 3Examples of Discrete Probability Distributions
    3.1Discrete Uniform Distribution . 25
    3.2Binomial Distribution . 26
    3.3Hypergeometric Distribution. 27
    3.4Poisson Distribution . 31
    3.5Negative Binomial Distribution . 33
    3.6Geometric Distribution 35
    CHAPTER 4Examples of Continuous Probability Distributions
    4.1Continuous Uniform Distribution . 37
    4.2Normal Distribution 37
    4.3Gamma Distribution, Exponential Distribution, and Chi-Squared Distribution . 41
    4.4Beta Distribution . 44
    4.5Cauchy Distribution and Laplace Distribution 47
    4.6t-Distribution and F-Distribution . 49
    CHAPTER 5Multidimensional Probability Distributions
    5.1Joint Probability Distribution 51
    5.2Conditional Probability Distribution . 52
    5.3Contingency Table 53
    5.4Bayes’ Theorem. 53
    5.5Covariance and Correlation 55
    5.6Independence . 56
    CHAPTER 6Examples of Multidimensional Probability Distributions61
    6.1Multinomial Distribution . 61
    6.2Multivariate Normal Distribution . 62
    6.3Dirichlet Distribution 63
    6.4Wishart Distribution . 70
    CHAPTER 7Sum of Independent Random Variables
    7.1Convolution 73
    7.2Reproductive Property 74
    7.3Law of Large Numbers 74
    7.4Central Limit Theorem 77
    CHAPTER 8Probability Inequalities
    8.1Union Bound 81
    8.2Inequalities for Probabilities 82
    8.2.1Markov’s Inequality and Chernoff’s Inequality 82
    8.2.2Cantelli’s Inequality and Chebyshev’s Inequality 83
    8.3Inequalities for Expectation . 84
    8.3.1Jensen’s Inequality 84
    8.3.2H?lder’s Inequality and Schwarz’s Inequality . 85
    8.3.3Minkowski’s Inequality . 86
    8.3.4Kantorovich’s Inequality . 87
    8.4Inequalities for the Sum of Independent Random Vari-ables 87
    8.4.1Chebyshev’s Inequality and Chernoff’s Inequality 88
    8.4.2Hoeffding’s Inequality and Bernstein’s Inequality 88
    8.4.3Bennett’s Inequality. 89
    CHAPTER 9Statistical Estimation
    9.1Fundamentals of Statistical Estimation 91
    9.2Point Estimation 92
    9.2.1Parametric Density Estimation . 92
    9.2.2Nonparametric Density Estimation 93
    9.2.3Regression and Classification. 93
    9.2.4Model Selection 94
    9.3Interval Estimation. 95
    9.3.1Interval Estimation for Expectation of Normal Samples. 95
    9.3.2Bootstrap Confidence Interval 96
    9.3.3Bayesian Credible Interval. 97
    CHAPTER 10Hypothesis Testing
    10.1Fundamentals of Hypothesis Testing 99
    10.2Test for Expectation of Normal Samples 100
    10.3Neyman-Pearson Lemma . 101
    10.4Test for Contingency Tables 102
    10.5Test for Difference in Expectations of Normal Samples 104
    10.5.1 Two Samples without Correspondence . 104
    10.5.2 Two Samples with Correspondence 105
    10.6Nonparametric Test for Ranks. 107
    10.6.1 Two Samples without Correspondence . 107
    10.6.2 Two Samples with Correspondence 108
    10.7Monte Carlo Test . 108
    PART 3GENERATIVE APPROACH TO STATISTICAL PATTERN RECOGNITION
    CHAPTER 11Pattern Recognition via Generative Model Estimation113
    11.1Formulation of Pattern Recognition . 113
    11.2Statistical Pattern Recognition . 115
    11.3Criteria for Classifier Training . 117
    11.3.1 MAP Rule 117
    11.3.2 Minimum Misclassification Rate Rule 118
    11.3.3 Bayes Decision Rule 119
    11.3.4 Discussion . 121
    11.4Generative and Discriminative Approaches 121
    CHAPTER 12Maximum Likelihood Estimation
    12.1Definition. 123
    12.2Gaussian Model. 125
    12.3Computing the Class-Posterior Probability . 127
    12.4Fisher’s Linear Discriminant Analysis (FDA
    熱門(mén)推薦文章
    相關(guān)優(yōu)評榜
    相關(guān)產(chǎn)品
    品類(lèi)齊全,輕松購物 多倉直發(fā),極速配送 正品行貨,精致服務(wù) 天天低價(jià),暢選無(wú)憂(yōu)
    購物指南
    購物流程
    會(huì )員介紹
    生活旅行/團購
    常見(jiàn)問(wèn)題
    大家電
    聯(lián)系客服
    配送方式
    上門(mén)自提
    211限時(shí)達
    配送服務(wù)查詢(xún)
    配送費收取標準
    海外配送
    支付方式
    貨到付款
    在線(xiàn)支付
    分期付款
    郵局匯款
    公司轉賬
    售后服務(wù)
    售后政策
    價(jià)格保護
    退款說(shuō)明
    返修/退換貨
    取消訂單
    特色服務(wù)
    奪寶島
    DIY裝機
    延保服務(wù)
    京東E卡
    京東通信
    京東JD+
    亚洲精品乱码久久久97_国产伦子一区二区三区_久久99精品久久久欧美_天天看片永久av影城网页
  • <em id="pai5d"></em><sup id="pai5d"></sup>
    
    

    <small id="pai5d"><rp id="pai5d"></rp></small>
    <option id="pai5d"></option>

    
    
  • <sup id="pai5d"></sup>
    <em id="pai5d"><label id="pai5d"></label></em>

  • <s id="pai5d"></s>